…unter Verwendung von INOQ-Produkten

Publikationen anderer Autoren, bei denen eines unserer INOQ Produkte verwendet wurden.

Abdelhalim, T., Jannoura, R., & Joergensen, R. G. (2019).
Mycorrhiza response and phosphorus acquisition efficiency of sorghum cultivars differing in strigolactone composition.
Plant and Soil, 1-9. https://doi.org/10.1007/s11104-019-03960-y
Graf F., Bast A., Gärtner H., Yildiz A. (2019).
Effects of Mycorrhizal Fungi on Slope Stabilisation Functions of Plants. In: Wu W. (eds) Recent Advances in Geotechnical Research, pp 57-77. Springer Series in Geomechanics and Geoengineering. Springer, Cham, https://doi.org/10.1007/978-3-319-89671-7_6
Liu, H., Song, F., Liu, S., Li, X., Liu, F., Zhu, X. (2019).
Arbuscular mycorrhiza improves nitrogen use efficiency in soybean grown under partial root-zone drying irrigation.
Archives of Agronomy and Soil Science, 65(2): 269-279. DOI: 10.1080/03650340.2018.1493724
Plouznikoff, K., Asins, M.J., Dupré de Boulois, H., Carbonell, E.A., Declerck, S. (2019).
Genetic analysis of tomato root colonization by arbuscular mycorrhizal fungi.
Annals of Botany XX: 1–14. doi: 10.1093/aob/mcy240
Wang, J.Y., Haider, I., Jamil, M., Fiorilli, V., Saito, Y., Mi, J., Baz, L., Kountche, B.A., Jia, K-P., Guo, X., Balakrishna, A., Ntui, V.O., Reinke, B., Volpe, V., Gojobori, T., Blilou, I., Lanfranco, L., Bonfante, P., Al-Babili, S. (2019).
The apocarotenoid metabolite zaxinone regulates growth and strigolactone biosynthesis in rice.
Nature Communication 10: 810.
Yakti, W., Andrade-Linares, D.R., Ngwene, B., Bitterlich, M., Kovács, G.M., Franken, P. (2019).
Phosphate nutrition in root-fungus interactions. In „Endophytes for a growing world. (eds) Trevor R. Hodkinson, Fiona M. Doohan, Brian R. Murphy, Matthew J. Saunders;
Cambridge University Press: 120-130.
Bitterlich, M., Franken, P., Graefe, J. (2018).
Arbuscular Mycorrhiza Improves Substrate Hydraulic Conductivity in the Plant Available Moisture Range Under Root Growth Exclusion.
Front. Plant Sci. 9:301. doi: 10.3389/fpls.2018.00301
Drechsler, N., Courty, PE., Brulé, D., Kunze, R. (2018).
Identification of arbuscular mycorrhiza-inducible Nitrate Transporter 1/Peptide Transporter Family (NPF) genes in rice.
Mycorrhiza, 28 (1) : 93-100. https://doi.org/10.1007/s00572-017-0802-z
Friede, M., Unger, S., Heuer, L., Stammes, R., Beyschlag, W. (2018).
Nitrogen limitation impairs plant control over the arbuscular mycorrhizal symbiosis in response to phosphorus and shading in two European sand dune species.
Plant Ecol, 219 (1): 17-29. https://doi.org/10.1007/s11258-017-0774-2
Lehnert, H., Serfling, A., Friedt, W., Ordon, F. (2018).
Genome-Wide Association Studies Reveal Genomic Regions Associated With the Response of Wheat (Triticum aestivum L.) to Mycorrhizae Under Drought Stress Conditions.
Front Plant Sci. 9: 1728. doi: 10.3389/fpls.2018.01728
Mollavali, M., Perner, H., Rohn, S., Riehle, P., Hanschen, F.S., Schwartz, D. (2018).
Nitrogen form and mycorrhizal inoculation amount and timing affect flavonol biosynthesis in onion (Allium cepa L.).
Mycorrhiza, 28 (1): 59-70. https://doi.org/10.1007/s00572-017-0799-3
Neu, S., Müller, I, Herzig, R., Dudel, E.G. (2018).
Trace elements bioavailability to winter wheat (Triticum aestivum L.) grown subsequent to high biomass plants in a greenhouse study.
International Journal of Phytoremediation, 20(6): 574-580. DOI: 10.1080/15226514.2017.1405377
Pollastri, S., Savvides, A., Pesando, M., Lumini, E., Volpe, M.G., Ozudogru, E. A., Faccio, A., De Cunzo, F., Michelozzi, M., Lambardi, M., Fotopoulos, V., Loreto, F., Centritto, M., Balestrini, R. (2018).
Impact of two arbuscular mycorrhizal fungi on Arundo donax L. response to salt stress.
Planta  247: 573. https://doi.org/10.1007/s00425-017-2808-3
Sabra, M., Aboulnasr, A., Franken, P., Perreca, E., Wright, L.P., Camehl, I. (2018).
Beneficial Root Endophytic Fungi Increase Growth and Quality Parameters of Sweet Basil in Heavy Metal Contaminated Soil.
Front Plant Sci., 9: 1726. doi: 10.3389/fpls.2018.01726
Tomczak, V.V., Müller, C. (2018). Plant species, mycorrhiza, and aphid age influence the performance and behaviour of a generalist. Ecol Entomol, 43: 37-46. doi:10.1111/een.12461
Wang, M., Schäfer, M., Li, D., Halitschke, R., Dong, C., McGale, E., Paetz, C., Song, Y., Li, S., Dong, J., Heiling, S., Groten, K., Franken, P., Bitterlich, M., Harrison, M.J., Paszkowski, U., Baldwin, I.T. (2018).
Blumenols as shoot markers of root symbiosis with arbuscular mycorrhizal fungi.
eLife 2018;7:e37093. doi: 10.7554/eLife.37093
Zhu, X., Song, F., Liu, S., Liu, F., Li, X. (2018).
Arbuscular mycorrhiza enhances nutrient accumulation in wheat exposed to elevated CO2 and soil salinity .
J. Plant Nutr. Soil Sci., 181: 836-846. doi:10.1002/jpln.201700575
Zhu, Z., Cao, Q., Sun, L., Yang, X., Yang, W., Zhang, H. (2018).
Stomatal Conductance and Morphology of Arbuscular Mycorrhizal Wheat Plants Response to Elevated CO2 and NaCl Stress.
Front Plant Sci. 9: 1363.  doi: 10.3389/fpls.2018.01363
Boldt-Burisch, K., Naeth, M.A. (2017).
Mycorrhization affects root distribution of Lotus corniculatus and Calamagrostis epigeios in a nutrient poor heterogeneous soil in a rhizotron experiment.
Rhizosphere, 4: 36-47. https://doi.org/10.1016/j.rhisph.2017.06.003.
Imperiali, N., Chiriboga, X., Schlaeppi, K., Fesselet, M., Villacrés, D., Jaffuel, G., … & Maurhofer, M. (2017).
Combined field inoculations of Pseudomonas bacteria, arbuscular mycorrhizal fungi and entomopathogenic nematodes and their effects on wheat performance.
Frontiers in Plant Science, 8, 1809. https://doi.org/10.3389/fpls.2017.01809
Lehnert, H., Serfling, A., Enders, M., Friedt, W., Ordon, F. (2017).
Genetics of mycorrhizal symbiosis in winter wheat (Triticum aestivum).

New Phytol, 215: 779-791. doi:10.1111/nph.14595
Müller, A., Ngwene, B., Peiter, E., George, E. (2017).
Quantity and distribution of arbuscular mycorrhizal fungal storage organs within dead roots.
Mycorrhiza, 27 (3): 201-210. https://doi.org/10.1007/s00572-016-0741-0
Neu, S., Schaller, J., Dudel, E.G. (2017).
Silicon availability modifies nutrient use efficiency and content, C:N:P stoichiometry, and productivity of winter wheat (Triticum aestivum L.).
Scientific Reports 7, Article number: 40829. doi: 10.1038/srep40829
Seck-Mbengue, M.F., Müller, A., Ngwene, B., Neumann, E., George, E. (2017).
Transport of nitrogen and zinc to rhodes grass by arbuscular mycorrhiza and roots as affected by different nitrogen sources (NH4 +-N and NO3-N).
Symbiosis, 73 (3): 191-200. https://doi.org/10.1007/s13199-017-0480-9
Tomczak, V.V., Müller, C. (2017).
Influence of arbuscular mycorrhizal stage and plant age on the performance of a generalist aphid.
Journal of Insect Physiology, 98: 258-266. https://doi.org/10.1016/j.jinsphys.2017.01.016
Unger, S., Friede, M., Volkmar, K., Hundacker, J., Beyschlag, W. (2017).
Relationship between mycorrhizal responsiveness and root traits in European sand dune species.
Rhizosphere, 3 (1) : 160-169. https://doi.org/10.1016/j.rhisph.2017.04.008.
Bast, A., W. Wilcke, F. Graf, P. Lüscher, Gärtner, H. (2016).
Does mycorrhizal inoculation improve plant survival, aggregate stability, and fine root development on a coarse‐grained soil in an alpine eco‐engineering field experiment?
J. Geophys. Res. Biogeosci., 121: 2158–2171. doi:10.1002/2016JG003422.
Calvo-Polanco, M., Sánchez-Romera, B., Aroca, R., Asins, M-J., Declerck, S., Dodd, I.C., Martínez-Andújar, C., Albacete, A., Ruiz-Lozano, J.M. (2016).
Exploring the use of recombinant inbred lines in combination with beneficial microbial inoculants (AM fungus and PGPR) to improve drought stress tolerance in tomato.
Environmental and Experimental Botany, 131: 47-57. https://doi.org/10.1016/j.envexpbot.2016.06.015.
Cosme, M., Ramireddy, E., Franken, P., Schmülling, T., Wurst, S. (2016).
Shoot- and root-borne cytokinin influences arbuscular mycorrhizal symbiosis.
Mycorrhiza, 26 (7): 709-720. https://doi.org/10.1007/s00572-016-0706-3
Dzomeku, B.M., Darkey, S.K., Bam, R.K., Sarkodie Addo J., Wunsche, J. (2016).
Exploratory assessment of potential mycorrhization of two landraces of plantain.
Journal of Basic and Applied Research International, 18(3): 146-151.
Engel, R., Szabó, K., Abrankó, L., Rendes, K., Füzy, A., Takács, T. (2016).
Effect of Arbuscular Mycorrhizal Fungi on the Growth and Polyphenol Profile of Marjoram, Lemon Balm, and Marigold.
J. Agric. Food Chem., 64 (19): 3733–3742. DOI: 10.1021/acs.jafc.6b00408
Friede, M., Unger, S., Hellmann, C., Beyschlag, W. (2016).
Conditions Promoting Mycorrhizal Parasitism Are of Minor Importance for Competitive Interactions in Two Differentially Mycotrophic Species.
Front. Plant Sci. 7:1465. doi: 10.3389/fpls.2016.01465
Guo, X., Petermann, J.S., Schittko, C., Wurst, S. (2016).
Root-knot nematodes (Meloidogyne hapla) can modify the positive plant intraspecific diversity-productivity effect on red clover in clover-grass communities.
Applied Soil Ecology, 102: 26-35. https://doi.org/10.1016/j.apsoil.2016.02.007.
Moreira, H., Pereira, S.I.A., Marques, A.P.G.C., Rangel, A.O.S.S., Castro, P.M.L. (2016).
Mine land valorization through energy maize production enhanced by the application of plant growth-promoting rhizobacteria and arbuscular mycorrhizal fungi
Environ Sci Pollut Res, 23 (7): 6940-6950. https://doi.org/10.1007/s11356-015-5914-4
Pereira, S.I.A., Moreira, H., Argyras, K., Castro, P.M.L., Marques, A.P.G.C. (2016).
Promotion of sunflower growth under saline water irrigation by the inoculation of beneficial microorganisms.
Applied Soil Ecology, 105 : 36-47. https://doi.org/10.1016/j.apsoil.2016.03.015.
Sut, M., Boldt-Burisch, K., Raab, T. (2016).
Possible evidence for contribution of arbuscular mycorrhizal fungi (AMF) in phytoremediation of iron–cyanide (Fe–CN) complexes.
Ecotoxicology 25 (6): 1260-1269. https://doi.org/10.1007/s10646-016-1678-y
Tomczak, V.V., Schweiger, R., Müller, C. (2016).
Effects of Arbuscular Mycorrhiza on Plant Chemistry and the Development and Behavior of a Generalist Herbivore.
J Chem Ecol, 42 (12): 1247-1258. https://doi.org/10.1007/s10886-016-0785-9
Unger, S., Friede, M., Hundacker, J., Volkmar, K., Beyschlag, W. (2016).
Allocation trade-off between root and mycorrhizal surface defines nitrogen and phosphorus relations in 13 grassland species. Plant Soil, 407 (1-2): 279-292.
Zhu, X., Song, F., Liu, S., Liu, F. (2016).
Role of Arbuscular Mycorrhiza in Alleviating Salinity Stress in Wheat (Triticum aestivum L.) Grown Under Ambient and Elevated CO2.
J Agro Crop Sci, 202: 486-496. doi:10.1111/jac.12175
Zhu, X., Song, F., Liu, S., Liu, F. (2016).
Arbuscular mycorrhiza improve growth, nitrogen uptake, and nitrogen use efficiency in wheat grown under elevated CO2. Mycorrhiza, 26 (2): 133-140.
Bast, A., Wilcke, W., Graf, F., Lüscher, P., Gärtner, H. (2015).
A simplified and rapid technique to determine an aggregate stability coefficient in coarse grained soils.
CATENA, 127: 170-176. https://doi.org/10.1016/j.catena.2014.11.017.
Degola, F., Fattorini, L.,  Bona, L.,  Triscari Sprimuto, C., Argese, E., Berta, G., Sanità di Toppi, L. (2015).
The symbiosis between Nicotiana tabacum and the endomycorrhizal fungus Funneliformis mosseae increases the plant glutathione level and decreases leaf cadmium and root arsenic contents.
Plant Physiology and Biochemistry, 92: 11-18. https://doi.org/10.1016/j.plaphy.2015.04.001.
Engel, R., Szabó, K., Abrankó, L., Sárosi, S., Füzy, A., Takács, T. (2015).
Effect of fertilization and arbuscular mycorrhizal fungi on active substances of marjoram.
Planta Med 81; 144.
DOI: 10.1055/s-0035-1565768
Guo, X., Petermann, J.S., Schittko, C., Wurst, S. (2015).
Independent role of belowground organisms and plant cultivar diversity in legume-grass communities.
Applied Soil Ecology 95: 1-8. http://dx.doi.org/10.1016/j.apsoil.2015.05.010
Höpfner, I., Friede M., Unger, S., Beyschlag, W. (2015).
Potential advantages of highly mycotrophic foraging for the establishment of early successional pioneer plants on sand.
Functional Plant Biology, 42(1): 95-104. https://doi.org/10.1071/FP14097
Lingua, G., Copetta, A., Musso, D., Aimo, S., Ranzenigo, A., Buico, A., Gianotti, V., Osella, D., Berta, G. (2015).
Effect of arbuscular mycorrhizal and bacterial inocula on nitrate concentration in mesocosms simulating a wastewater treatment system relying on phytodepuration.
Environ Sci Pollut Res, 22 (23): 18616-18625. https://doi.org/10.1007/s11356-015-5502-7
Peixe, A., Alpendre, P., Barroso, J., Carlos, R., Soto, M.G. (2015).
New strategies for in vitro rooting and plantlet acclimatization of the “paradox” (Juglans regia x Juglans hindsii) rootstock.
Acta Hortic. 1083, 287-293. DOI: 10.17660/ActaHortic.2015.1083.36
Schelfhout, S., De Schrijver, A., De Bolle, S., De Gelder, L., Demey, A., Du Pré, T., De Neve, S., Haesaert, G., Verheyen, K., Mertens, J. (2015).
Phosphorus mining for ecological restoration on former agricultural land.
Restor Ecol, 23: 842-851. doi:10.1111/rec.12264
Yildiz, A., Askarinejad, A., Graf, F., Rickli, C., Springman, S. M. (2015).
Effects of roots and mycorrhizal fungi on the stability of slopes.
In M. G. Winter, D. M. Smith, P. J. L. Eldred, & D. G. Toll (Eds.), Geotechnical engineering for infrastructure and development (pp. 1693-1698). London: ICE Publishing.
Bast A., Wilcke W., Graf F., Lüscher P., Gärtner H. (2014).
The use of mycorrhiza for eco‐engineering measures in steep alpine environments: effects on soil aggregate formation and fine‐root development.
Earth Surf. Process. Landforms, 39: 1753–1763, doi: 10.1002/esp.3557
Bitterlich, M., Krügel, U., Boldt‐Burisch, K., Franken, P., Kühn, C. (2014).
The sucrose transporter SlSUT2 from tomato interacts with brassinosteroid functioning and affects arbuscular mycorrhiza formation.
Plant J, 78: 877-889. doi:10.1111/tpj.12515
Cosme, M., Franken, P., Mewis, I., Baldermann, S., Wurst, S. (2014).
Arbuscular mycorrhizal fungi affect glucosinolate and mineral element composition in leaves of Moringa oleifera.
Mycorrhiza, 24 (7): 565-570. https://doi.org/10.1007/s00572-014-0574-7
Neagoe, A., Stancu, P., Nicoară, A., Onete, M., Bodescu, F., Gheorghe, R., Iordache, V. (2014).
Effects of arbuscular mycorrhizal fungi on Agrostis capillaris grown on amended mine tailing substrate at pot, lysimeter, and field plot scales.
Environ Sci Pollut Res, 21 (11): 6859-6876. https://doi.org/10.1007/s11356-013-1908-2
Ngosong, C., Gabriel, E., Ruess, L. (2014).
Collembola grazing on arbuscular mycorrhiza fungi modulates nutrient allocation in plants.
Pedobiologia, 57(3): 171-179. https://doi.org/10.1016/j.pedobi.2014.03.002
Schweiger, R., Baier, M.C., Persicke, M., Müller, C. (2014).
High specificity in plant leaf metabolic responses to arbuscular mycorrhiza.
Nature Communications 5: 3886.
Schweiger, R., Baier, M.C., Müller, C. (2014).
Arbuscular Mycorrhiza-Induced Shifts in Foliar Metabolism and Photosynthesis Mirror the Developmental Stage of the Symbiosis and Are Only Partly Driven by Improved Phosphate Uptake.
MPMI, 27 (12): 1403–1412. http://dx.doi.org/10.1094/MPMI-05-14-0126-R
Taffouo, V.D., Ngwene, B., Akoa, A., Franken, P. (2014).
Influence of phosphorus application and arbuscular mycorrhizal inoculation on growth, foliar nitrogen mobilization, and phosphorus partitioning in cowpea plants.
Mycorrhiza, 24 (5): 361-368. https://doi.org/10.1007/s00572-013-0544-5
Thiem D., Szmidt-Jaworska A., Baum C., Muders K., Niedojadlo K., Hrynkiewicz K. (2014).
Interactive physiological response of potato (Solanum tuberosum L.) plants to fungal colonization and Potato virus Y (PVY) infection.
Acta Mycologica, 49(2): 291-303. 291–303. DOI: 10.5586/am.2014.015
Almethyeb, M., Ruppel, S., Paulsen, H.-M., Vassilev, N., Eichler-Löbermann, B. (2013).
Single and combined applications of arbuscular mycorrhizal fungi and Enterobacter radicincitans affect nutrient uptake of faba bean and soil biological characteristics.
Landbauforschung = vTI Agriculture and Forestry Research, 3 (63): 229-234.
Müller, A., George, E., Gabriel-Neumann, E. (2013).
The symbiotic recapture of nitrogen from dead mycorrhizal and non-mycorrhizal roots of tomato plants.
Plant Soil, 364 (1-2): 341-355. https://doi.org/10.1007/s11104-012-1372-7
Tong, Y., Gabriel-Neumann, E., Ngwene, B. Krumbein, A., Baldermann, S., Schreiner, M., George, E. (2013).
Effects of single and mixed inoculation with two arbuscular mycorrhizal fungi in two different levels of phosphorus supply on β-carotene concentrations in sweet potato (Ipomoea batatas L.) tubers.
Plant Soil 372 (1-2): 361-374. https://doi.org/10.1007/s11104-013-1708-y
Jannoura, R., Kleikamp, B., Dyckmans, J., Joergensen, R.G. (2012).
Impact of pea growth and arbuscular mycorrhizal fungi on the decomposition of 15N-labeled maize residues.
Biol Fertil Soils, 48 (5): 547-560. https://doi.org/10.1007/s00374-011-0647-0
Mammitzsch, L., Teply, A., Wurst, S. (2012).
Effects of earthworms and arbuscular mycorrhizal fungi depend on the successional stage of a grassland plant community.
Plant Ecology 213 (4): 675–683.
Wolter, A., Wolter, S., Schröder, F.-G. (2012).
Screening test – interaction between diverse microorganisms and Hedera helix “Woerner”.
Acta Hortic. 937, 527-532. DOI: 10.17660/ActaHortic.2012.937.64
Bona, E., Marsano, F., Massa, N., Cattaneo, C., Cesaro, P., Argese, E., Sanità di Toppi, L., Cavaletto, M., Berta, G. (2011).
Proteomic analysis as a tool for investigating arsenic stress in Pteris vittata roots colonized or not by arbuscular mycorrhizal symbiosis.
Journal of Proteomics, 74: 1338-1350.
Burri, K. , Gromke, C., Graf, F. (2011).
Mycorrhizal fungi protect the soil from wind erosion: a wind tunnel study.
Land Degrad. Develop., 24: 385-392. doi:10.1002/ldr.1136
Wurst, S., Gebhardt, K., Rillig, M. C. (2011), Independent effects of arbuscular mycorrhiza and earthworms on plant diversity and newcomer plant establishment. Journal of Vegetation Science, 22: 1021-1030. doi:10.1111/j.1654-1103.2011.01321.x
Wurst, S., Rillig, M.C. (2011).
Additive effects of functionally dissimilar above- and belowground organisms on a grassland plant community.
Journal of Plant Ecology, 4 (4): 221–227. https://doi.org/10.1093/jpe/rtr012
Camen, D., Pasc, M., Beinsan, C., Sumalan, R. (2010).
Research Regarding the Effect of Arbuscular Mycorrhiza upon Principals Physiological Index in Salad – Lactuca sativa L.
Bulletin UASVM Horticulture, 67(1)
Camen, D., Beinşan, C., Şumălan, R., Mironela, P. (2010).
Research on the effect of arbuscular mycorrhizae on some physiological indices of lettuce – Lactuca sativa L.

Journal of Horticulture, Forestry and Biotechnology, 14(3): 128-130.
Khider, A.K., Othman, M. (2010).
Selection of Effective mycorrhizal Inoculums for soybean (Glycine max L.) plants.
Journal of Kerbala University, Iraq: The 1st Scientific Conference the College of Agriculture. DOI: 10.13140/RG.2.1.3678.7042
Schmidt, B., Domonkos, M., Sumalan, R., Biro, B. (2010).
Suppression of arbuscular mycorrhiza‘s development by high concentrations of phosphorous at Tagetes patula L.
Research Journal of Agricultural Science, 42 (4)
Wurst, S., Forstreuter, M. (2010).
Colonization of Tanacetum vulgare by aphids is reduced by earthworms.
Entomologia Experimentalis et Applicata, 137: 86-92. doi:10.1111/j.1570-7458.2010.01035.x
Ardakani, M. R., Pietsch, G., Moghaddam, A., Raza, A., Friedel, J.K. (2009).
Response of Root Properties to Tripartite Symbiosis between Lucerne (Medicago sativa L.), Rhizobia and Mycorrhiza Under Dry Organic Farming Conditions.
American Journal of Agricultural and Biological Sciences, 4 (4): 266-277.
Ardakani, M.R., Pietsch, G., Wanek, W., Schweiger, P., Moghaddam, A., Friedel, J.K. (2009).
Nitrogen fixation and yield of lucerne (Medicago sativa L.), as affected by co-inoculation with Sinorhizobium meliloti and arbuscular mycorrhiza under dry organic farming conditions.
American-Eurasian Journal of Agricultural and Environmental Sciences, 6 (2): 173-183.